Bignteger Class Reference

Pascal Levy
pascal.levy@aequans.com

April 12, 2014

1 Overview

The BigInteger class implements immutable arbitrary-precision integers. It provides meth-
ods to perform usual arithmetic operations, as well as modular arithmetic, GCD calculation,
primality testing, prime generation, and a few other miscellaneous operations.

This class was not written with performance in mind. It rather focuses on correctness, porta-
bility, and good integration with the Cocoa Framework. If your application relies heavily on
multi-precision integer computation, you will be luckier with C-oriented libraries such as GMP.
But if you only need a little bit of modular arithmetic or want to occasionally generate a big
prime number with a minimum development effort, then the BigInteger class is for you.

1.1 Installation

The BigInteger class comes in a header file and two universal libraries, one for each platform.
To add big integer support to your project:

e Add the BigInteger.h file to your project.

e If you are targeting iOS, add the 1ibBigInteger-i0S.a file. If you are targeting Mac OS
X, add the 1ibBigInteger-Mac0SX.a file.

e Go to the Build Phases tab in the target settings. Open the ”Link Binary With Libraries”
panel and check the library file you have just added is present. If it is not, add it now by
clicking +.

e Select the Build Settings tab and find the ”Other Linker Flags” build setting. If it is not
already present, add the flag -0bjC to this setting’s value. This will tell the linker to
link the whole BigInteger class into your application, even if the linker can’t tell which
methods are used. This is needed because Objective-C is a dynamic language and the
linker can’t always tell which classes and categories are used by your application code.

e Don’t forget to #import the header file in every source file that requires the BigInteger
class definition.

The universal library file for iOS contains five architectures: armv7, armv7s and arm64 for
device support, 1386 and x86_64 for simulator support. The universal library file for Mac OS
X contains two architectures: 1386 and x86_64. All functions behave the same whatever the
platform, except for the hash method.

1.2 Internal representation

Big integers are represented internally as an array of digits. On 32-bit architectures, each digit
occupies 16 bits; on 64-bit architectures, each digit occupies 32 bits. In both cases, digits are
stored in little-endian byte order: the least significant bits are stored at the lowest addresses of
the array. You can retrieve the bits of a big integer using the getBytes:length: method.

Besides the integer bits, the BigInteger class also stores a sign flag to indicate negative num-
bers. This contrasts with native types such as int and long that usually represent negative
numbers using 2’s complement. Due to this difference, the shiftRight: method does not behave
on negative big integers as the C >> operator behaves on negative integer values. Refer to this
function’s documentation for more information.

1.3 Maximal value

On 32-bit architectures, a big integer is limited to 23! digits of 16 bits each, yielding to a
maximal value of 234359738368 - Op G4-bit architectures, a big integer is limited to 2% digits of 32
bits each, yielding to a maximal value of 2295147905179352825856 Thege are only theoretical limits
though; a physical computer will run out of memory far before reaching these values.

For the sake of simplicity and performance, the BigInteger class does not perform any overflow
control. It is up to the developer to ensure its application never involves integers larger than a
few thousands of bits on a mobile platform such as an iPad or iPhone, and larger than a few
millions of bits on a desktop computer.

The most sensitive function is exp:. It can produce billions of digits when the exponent
grows.

1.4 Sample code

The code snippet below illustrates how using the BigInteger class is easy. It simply generates
a 200-bit long random prime number.

BigInteger * p, * r;

r = [[BigInteger alloc] initWithRandomNumber0fSize:200 exact:YES];
p = [r nextProbablePrime];

NSLog(@"prime = %@", [p toRadix:10]);

[r release];

The first line allocates a BigInteger object and initializes its value with 200 random bits. The
second line searches for the first prime greater than or equal to this number. The third line
converts this number to its decimal representation and prints it to the debug console.

2 Adopted Protocols

2.1 NSCoding

- encodeWithCoder:
- initWithCoder:

2.2 NSCopying

- copyWithZone:

3 Functions by Task

3.1 Creating and initializing big integers

+ bigintWithBiglnteger:

+ bigintWithInt32:

+ bigintWithRandomNumberOfSize:exact:
+ bigintWithString:radix:

+ bigintWithUnsignedInt32:

- initWithBiglnteger:

initWithInt32:
initWithRandomNumberOfSize:exact:
initWithString:radix:

- initWithUnsignedInt32:

3.2 Retrieving String Representation

- description
- toRadix:

3.3 Accessing Numeric Value
- getBytes:length:

- intValue
- longValue

3.4 Comparing Big Integers

compare:

hash

- isEqual:

- isEqualToBigInteger:
isZero

3.5 Performing Arithmetic Operations

- abs

- add:

- divide:
divide:remainder:

- exp:
exp:modulo:
greatestCommonDivisor:

inverseModulo:

- isEven

- is0dd

- multiply:

- multiply:modulo:

negate
shiftLeft:
shiftRight:

- sign

- sub:

3.6 Performing Bitwise Operations

- bitCount

- bitwiseNotUsingWidth:
- bitwiseAnd:

- bitwiseOr:

- bitwiseXor:

3.7 Handling Prime Numbers

- isProbablePrime
- nextProbablePrime

4 Class methods

4.1 bigintWithBiglnteger:
Returns a BigInteger object initialized by copying the content of another given big inte-
ger.
+ (BigInteger *)bigintWithBigInteger: (Biglnteger *)bigint
Parameters
bigint
The big integer object from which to copy the content. Must not be nil.
Return Value

A BigInteger object initialized by copying the content of the bigint parameter.

4.2 bigintWithInt32:

Initializes and returns a big integer containing a given 32-bit signed value.
+ (BigInteger *)bigintWithInt32:(int32_t)x
Parameters

x
The value for the new big integer.

Return Value

A BiglInteger object containing .

4.3 bigintWithRandomNumberOfSize:exact:

Initializes and returns a BigInteger object containing a random value.
+ (BigInteger *)bigintWithRandomNumber0fSize: (int)bitcount exact: (BOOL)exact
Parameters

bitcount
Length in bits of the generated random number. Should be greater than or equal to 2.

exact
Indicates whether the returned big integer should contain exactly bitcount bits or not.
See discussion below.

Return Value
A BiglInteger object containing a random value of the specified length.
Discussion

If the exact parameter is set to YES, the returned big integer is exactly bitcount bits long; in
other words, its highest bit is always 1. If the exact parameter is set to NO, all the bits in
the returned big integer are fully random; this implies its length may be a little shorter than
bitcount bits if by chance the highest bits are 0’s.

This method internally uses the BSD arc4random() pseudo-random number generator. You
don’t need to seed this generator as it initializes itself the first time it is called. Please refer to
"Mac OS X Manual Page For ARC4ARANDOM(3)” for more information.

4.4 bigintWithString:radix:

Initializes and returns a BigInteger object from the given string representation of an inte-
ger.

+ (BigInteger *)bigintWithString: (NSString *)num radix:(int)radix

Parameters

num
The string representation of an integer. Must not be nil.

radix
The radix to use to interpret num. Should lie between 2 and 36 inclusive.

Return Value

A BiglInteger object initialized by translating the given string representation of an integer in
the specified radix, or nil if an error occurs.

Discussion

The allowed string representation consists of an optional minus sign followed by a sequence of
one or more digits in the specified radix. The string cannot contain any extraneous characters,
such as white spaces for example.

4.5 bigintWithUnsignedInt32:

Initializes and returns a big integer containing a given 32-bit unsigned value.
+ (Biglnteger *)bigintWithUnsignedInt32: (uint32_t)x
Parameters

x
The value for the new big integer.

Return Value

A BiglInteger object containing x.

5 Instance Methods

5.1 abs

Returns the absolute value of the receiver.
- (BigInteger *)abs
Return Value

A BigInteger object containing the absolute value of the receiver. The returned object may
be the same object as the original receiver if it already contains a positive integer.

5.2 add:

Adds the given big integer to the receiver and returns the result.
- (BigInteger *)add:(BigInteger *)x
Parameters

x
The big integer to add to the receiver. Must not be nil.

Return Value

A BiglInteger object containing the sum of the receiver and z.

5.3 bitCount

Returns the number of bits of the binary representation of the receiver.
- (int)bitCount
Return Value

The number of bits of the binary representation of the value the receiver contains. This can
also be interpreted as the one-based index of the most significant bit.

Discussion

The BigInteger class does not represent negative values using 2’s complement but using an
extra sign bit. This sign bit is not included in the count this function returns.

5.4 bitwiseNotUsingWidth:

Returns the result of a bitwise logical NOT on the receiver.
- (BigInteger *)bitwiseNotUsingWidth: (int)count
Parameters

count
The number of bits on which the operation is performed (see discussion below). Should
be greater or equal to 1.

Return Value
A BiglInteger object containing the bitwise logical NOT of the receiver.
Discussion

Unlike native types, the BigInteger class does not represent numbers using a fixed number
of bits. Instead, it dynamically adapts its width to drop the highest bits when they are null.
This behavior may cause a problem when performing bitwise operations involving the NOT
operator, because these highest bits being missing, they cannot be complemented to 1’s by
the NOT operator. Any subsequent operation then leads to unexpected result. For example,
consider computing x A -y with x = 10 and y = 2 using a 8-bit native type and using the
BigInteger class.

Operation | Using a fixed width native type | Using BigInteger objects
Y 00000010 10
-y 11111101 1
T 00001010 1010
T N\ -y 00001000 0

To avoid this problem, the bitwiseNotUsingWidth: method provides a count parameter that
specifies the minimum number of bits on which the operation should be performed. If count
is greater than the actual width of the binary representation of the receiver, leading 0’s are
inserted on its left to expand it up to count bits, prior to applying the NOT operator. If you
do not care about the operation width, simply pass 1 for this parameter.

Also note that the BigInteger class does not represent negative values using 2’s complement
but using an extra sign bit. Therefore this method behaves differently than the standard ~
operator on negative numbers.

The signs of the operands are ignored. The returned value is always positive.

5.5 bitwiseAnd:

Returns the result of a bitwise logical AND between the given big integer and the receiver.
- (BigInteger *)bitwiseAnd: (Biglnteger *)x
Parameters

x
The big integer to AND with the receiver. Must not be nil.

Return Value
A BiglInteger object containing the bitwise logical AND of the receiver and .
Discussion

The BigInteger class does not represent negative values using 2’s complement but using an
extra sign bit. Therefore this method behaves differently than the standard & operator on
negative numbers.

The signs of the operands are ignored. The returned value is always positive.

5.6 DbitwiseOr:

Returns the result of a bitwise logical OR between the given big integer and the receiver.
- (BigInteger *)bitwiseOr: (BigInteger *)x
Parameters

x
The big integer to OR with the receiver. Must not be nil.

Return Value
A BigInteger object containing the bitwise logical OR of the receiver and z.
Discussion

The BigInteger class does not represent negative values using 2’s complement but using an
extra sign bit. Therefore this method behaves differently than the standard | operator on
negative numbers.

The signs of the operands are ignored. The returned value is always positive.

5.7 bitwiseXor:

Returns the result of a bitwise logical XOR between the given big integer and the receiver.
- (BiglInteger *)bitwiseXor:(BigInteger *)x
Parameters

x
The big integer to XOR with the receiver. Must not be nil.

Return Value
A BigInteger object containing the bitwise logical XOR of the receiver and z.
Discussion

The BigInteger class does not represent negative values using 2’s complement but using an
extra sign bit. Therefore this method behaves differently than the standard ~ operator on
negative numbers.

The signs of the operands are ignored. The returned value is always positive.

5.8 compare:
Returns an NSComparisonResult value that indicates whether the receiver is greater than, equal
to, or less than a given big integer.
- (NSComparisonResult)compare: (BigInteger *)bigint
Parameters
bigint
The big integer with which to compare the receiver. Must not be nil.
Return Value

NSOrderedAscending if the value of bigint is greater than the receiver’s, NSOrderedSame if they
are equal, and NSOrderedDescending if the value of bigint is less than the receiver’s.

5.9 copyWithZone:

Returns a new instance that is a copy of the receiver.
- (id) copyWithZone: (NSZone *)zone
Parameters

zone
The zone identifies an area of memory from which to allocate for the new instance. This
parameter is deprecated and is present for compatibility only. You should always pass
nil.

Return Value
A BigInteger object that is a copy of the receiver.
Discussion

The returned object is implicitly retained by the sender, who is therefore responsible for releasing
it. You will typically never invoke this method but rather the copy method of NSObject, which
will in turn call copyWithZone: passing nil for the zone.

Since the BigInteger class is immutable, there is no point in creating several instances holding
the same value, so the actual implementation simply returns self. This may change in a future
release.

5.10 description

Returns a string describing the content of the receiver.
- (NSString *)description
Return Value

An NSString object containing a textual representation of the content of the receiver. This
representation consists of an optional minus sign followed by one or more groups of hexadecimal
digits.

Discussion

This method is implicitly called by the Cocoa formatting functions to convert a given object into
a string when they encounter the %@ format specifier. The implementation in this BigInteger
class is rather intended for debugging and logging purposes, though. To print a big integer in
a user friendly manner, prefer using the toRadix: method.

5.11 divide:

Divides the receiver by the given big integer and returns the result.
- (BigInteger *)divide:(BigInteger *)div
Parameters
div
The divisor. Must not be nil.
Return Value
A BiglInteger object containing the quotient of the receiver divided by div.
Discussion

The remainder of the division is lost. If you are interested in the remainder value, use the
divide:remainder: method instead.

5.12 divide:remainder:
Divides the receiver by the given big integer, returns the result, and optionally returns the
remainder.
- (BigInteger *)divide:(BigInteger *)div remainder:(BigInteger *x*)rem
Parameters
div

The divisor. Must not be nil.

rem
Upon return contains the remainder of the division. If you are not interested in the
remainder, pass in NULL or use the divide: method.

Return Value

A BigInteger object containing the quotient of the receiver divided by div. If the rem parameter
is not NULL, it is set to a BigInteger object containing the remainder of the division.

The sign of the remainder is always the same as the sign of the receiver.

5.13 encodeWithCoder:

Encodes the receiver using a given archiver.
- (void)encodeWithCoder: (NSCoder *)coder
Parameters

coder
An archiver object.

10

Discussion

The BigInteger class only supports keyed archiving. If the coder parameter points to an
encoder that does not support keyed archiving, an exception is thrown.

The encoding format is platform independent. An archive written on a 32-bit architecture can
be read on a 64-bit architecture and conversely. This may prove useful when exchanging data
between an i0S client application and a 64-bit server application, for example.

For more information about serializing and archiving objects, please refer to the NSCoding
protocol in the Cocoa documentation.

5.14 exp:

Raises the receiver to the given exponent and returns the result.
- (BigInteger *)exp:(uint32_t)exp
Parameters

exrp
The exponent to which the receiver should be raised.

Return Value
A BiglInteger object containing the value of the receiver raised to the given exponent.
Discussion

Raising an integer to an exponent can lead to huge numbers. The BigInteger class does not
restrict the value of erp nor it imposes limits on the maximum length of the result; however,
this method is likely to crash due to memory shortage when exp becomes big.

Since a negative exponent would lead to a fractional result the BigInteger class cannot han-
dle, the exp parameter is treated as an unsigned integer. You should pay attention to implicit
conversions that may take place when passing a signed integer to this parameter. For exam-
ple, passing -1 will be interpreted as passing 232 — 1, which will probably lead to unexpected
results.

If you need to compute a modular exponentiation (that is a® mod m) prefer using the exp:modulo:
method which performs this operation without explicitly building the intermediate result, saving
both memory and processor time.

5.15 exp:modulo:

Raises the receiver to the given exponent and returns the result modulo the given modulus.
- (BigInteger *)exp:(BigInteger *)exp modulo:(BigInteger *)mod
Parameters

erp
The exponent to which the receiver should be raised. Should not be nil.

mod
The modulus. Should not be nil.

11

Return Value

A BiglInteger object containing the value of the receiver raised to the given exponent modulo
the given modulus.

Discussion

Both the exponent and the modulus are expected to be positive. If they are not, the function
raises an exception. Moreover, the modulus should not be zero. The return value is always
positive and normalised between 0 and (modulus - 1).

5.16 getBytes:length:

Copies the content of the receiver to a byte array.
- (void)getBytes: (uint8_t *)bytes length:(int)length
Parameters

bytes
A pointer to a C byte array. Must not be NULL.

length
The length of the array the bytes parameter points to.

Discussion

This method copies the binary representation of a big integer object into the given C byte array.
Data comes in the little endian byte order; in other words, the lowest bits of the big integer
value go in the lowest indexes of the array, while the highest bits of the value go in the highest
indexes of the array.

If the binary representation of the big integer is shorter than length bytes, the array is filled up
with zeroes. On the other hand, if it is longer, only the first length bytes are copied into the
array and the highest bits are lost.

5.17 greatestCommonDivisor:

Determines the greatest common divisor of the receiver and the given big integer.
- (BigInteger *)greatestCommonDivisor: (BigInteger *)bigint
Parameters
bigint
A big integer value.
Return Value
A BiglInteger object containing the greatest common divisor of the receiver and bigint.
Discussion

The operation is performed using the Euclid’s algorithm. Both the receiver and the bigint
parameter are expected to be strictly positive. If one of them is negative or null, the function
raises an exception.

12

5.18 hash

Returns an unsigned integer that can be used as a hash table address.
- (NSUInteger)hash

Return Value

An unsigned integer that can be used as a hash table address.
Discussion

Two BigInteger objects holding the same value (i.e. calling the compare: method on them
returns NSOrderedSame) are guaranteed to have the same hash. The reverse is not true however;
two BigInteger objects having the same hash may hold different values.

Since the definition of NSUInteger by Cocoa depends on the platform, this function does not
return the same hash value on 32-bit and 64-bit architectures. You should not therefore exchange
the value returned by this function between platforms having different integer sizes.

5.19 initWithBiglnteger:
Returns a BigInteger object initialized by copying the content of another given big inte-
ger.
- (id)initWithBigInteger: (BigInteger *)bigint
Parameters
bigint
The big integer object from which to copy the content. Must not be nil.
Return Value

A BiglInteger object initialized by copying the content of the bigint parameter.

5.20 initWithCoder:

Returns an object initialized from data in a given unarchiver.
- (id)initWithCoder: (NSCoder *)decoder
Parameters

decoder
An unarchiver object.

Return Value
A BiglInteger object initialized with data in decoder.
Discussion

The BigInteger class only supports keyed archiving. If the decoder parameter points to an
encoder that does not support keyed archiving, an exception is thrown.

The encoding format is platform independent. An archive written on a 32-bit architecture can
be read on a 64-bit architecture and conversely. This may prove useful when exchanging data
between an i0S client application and a 64-bit server application, for example.

13

For more information about serializing and archiving objects, please refer to the NSCoding
protocol in the Cocoa documentation.

5.21 initWithInt32:

Initializes and returns a big integer containing a given 32-bit signed value.
- (id)initWithInt32: (int32_t)x
Parameters

x
The value for the new big integer.

Return Value

A BigInteger object containing .

5.22 initWithRandomNumberOfSize:exact:

Initializes and returns a BigInteger object containing a random value.
- (id)initWithRandomNumberOfSize: (int)bitcount exact:(BOOL)exact
Parameters

bitcount
Length in bits of the generated random number. Should be greater than or equal to 2.

exact
Indicates whether the returned big integer should contain exactly bitcount bits or not.
See discussion below.

Return Value
A BiglInteger object containing a random value of the specified length.
Discussion

If the exact parameter is set to YES, the returned big integer is exactly bitcount bits long; in
other words, its highest bit is always 1. If the exact parameter is set to NO, all the bits in
the returned big integer are fully random; this implies its length may be a little shorter than
bitcount bits if by chance the highest bits are 0’s.

This method internally uses the BSD arc4random() pseudo-random number generator. You
don’t need to seed this generator as it initializes itself the first time it is called. Please refer to
"Mac OS X Manual Page For ARC4RANDOM(3)” for more information.

5.23 initWithString:radix:

Initializes and returns a BigInteger object from the given string representation of an inte-
ger.

- (id)initWithString: (NSString *)num radix:(int)radix

Parameters

14

num
The string representation of an integer. Must not be nil.

radix
The radix to use to interpret num. Should lie between 2 and 36 inclusive.

Return Value

A BiglInteger object initialized by translating the given string representation of an integer in
the specified radix, or nil if an error occurs.

Discussion

The allowed string representation consists of an optional minus sign followed by a sequence of
one or more digits in the specified radix. The string cannot contain any extraneous characters,
such as white spaces for example.

5.24 initWithUnsignedInt32:

Initializes and returns a big integer containing a given 32-bit unsigned value.
- (id)initWithUnsignedInt32: (uint32_t)x
Parameters

x
The value for the new big integer.

Return Value

A BiglInteger object containing .

5.25 intValue

Returns the value of the receiver as a 32-bit signed integer value.
- (int32_t)intValue

Return Value

The integer value of the receiver.

Discussion

If the receiver contains a value that does not fit into a 32-bit signed integer, an exception is
raised. A 32-bit signed integer can represent values from —23! to 23! — 1 inclusive.

5.26 inverseModulo:

Computes the modular multiplicative inverse of the receiver.
- (BigInteger *)inverseModulo: (BigInteger *)mod
Parameters

mod
The modulus. Must not be nil.

15

Return Value

A BiglInteger object containing a value such as multiplying this value by the receiver modulo
mod yields 1, or nil if this value does not exist.

Discussion

The operation is performed using the extended Euclid’s algorithm. The mod parameter is
expected to be strictly positive. If it is negative or null, an exception is raised.

The modular multiplicative inverse is only defined if the receiver and mod are relatively primes,
that is ged(receiver,mod) = 1. In case the modular inverse is undefined, this function returns
nil.

5.27 isEqual:

Indicates whether the receiver and a given object are equal.
- (BOOL)isEqual: (id)object
Parameters

object
The object to be compared to the receiver.

Return Value

YES if object is a BigInteger object containing the same integer value than the receiver; NO
otherwise.

Discussion

Two BigInteger objects are equal if they contain the same integer value, that is calling the
compare: function on them returns NSOrderedSame.

This function inherited from NSObject is intended to compare any kind of objects. If you wish
to specifically compare two BigInteger objects, prefer using the faster isEqualToBiglnteger:
function.

5.28 isEqualToBiglnteger:

Indicates whether the receiver and a given big integer are equal.
- (BOOL)isEqualToBigInteger: (BigInteger *)bigint
Parameters
bigint

The BigInteger object to be compared to the receiver.

Return Value

YES if bigint is not nil and bigint and the receiver contain the same integer value; NO other-
wise.

Discussion

Two BigInteger objects are equal if they contain the same integer value, that is calling the
compare: function on them returns NSOrderedSame.

16

5.29 isEven

Indicates whether the receiver contains an even value.
- (BOOL)isEven
Return Value

YES if the receiver contains an even value, that is a value whose the lowest bit is 0; NO other-
wise.

5.30 isOdd

Indicates whether the receiver contains an odd value.
- (BOOL) is0dd
Return Value

YES if the receiver contains an odd value, that is a value whose the lowest bit is 1; NO other-
wise.

5.31 isProbablePrime

Determines whether the receiver contains a prime number, using a probabilistic primality
test.

- (BOOL)isProbablePrime

Return Value

YES if the receiver contains an integer value that is a probable prime; NO otherwise.
Discussion

The receiver is first checked against a table of small primes, to immediately reject numbers that
are trivial multiples of 2, 3, 5, 7, 11 and so on. Then, several Miller-Rabin trials are performed.
If none succeeds, the function concludes the number is probably prime.

The number of Miller-Rabin trials depends on the length of the number to test and ranges from
5 to 30. The shorter the bit count, the greater the number of trials. This ensures the probability
of a false positive stays below 278, which should be enough for most applications.

5.32 isZero

Indicates whether the receiver contains zero or not.
- (BOOL)isZero

Return Value

YES if the receiver contains zero; NO otherwise.
Discussion

Using this method is much faster and less error-prone than extracting the content of the receiver
with intValue or longValue and comparing the result with zero.

17

5.33 longValue

Returns the value of the receiver as a 64-bit signed integer value.
- (int64_t)longValue

Return Value

The value of the receiver.

Discussion

If the receiver contains a value that does not fit into a 64-bit signed integer, an exception is
raised. A 64-bit signed integer can represent values from —2% to 263 — 1 inclusive.

5.34 multiply:

Multiplies the receiver with a given big integer and returns the result.
- (BigInteger *)multiply: (BigInteger *)mul
Parameters

mul
The big integer to multiply with the receiver. Must not be nil.

Return Value

The result of the multiplication of the receiver by mul.

5.35 multiply:modulo:

Multiplies the receiver with a given big integer modulo a given modulus.
- (BigInteger *)multiply: (BigInteger *)mul modulo: (BigInteger *)mod
Parameters

mul
The big integer to multiply with the receiver. Must not be nil.

mod
The modulus. Must not be nil.

Return Value
The result of the multiplication of the receiver by mul modulo mod.
Discussion

The modulus is expected to be strictly positive. The function raises an exception if it is negative
or null.

The return value is always positive and normalised between 0 and (modulus - 1).

18

5.36 negate

Returns the opposite of the receiver.
- (BigInteger *)negate
Return Value

The opposite of the receiver.

5.37 nextProbablePrime

Determines the first prime number greater than or equal to the receiver, using a probabilistic
primality test.

- (BigInteger *)nextProbablePrime

Return Value

The first prime number that is greater than or equal to the receiver in absolute value.
Discussion

The function loops, enumerating all odd numbers starting with the initial receiver absolute
value, until it finds a probable prime. If the receiver contains a negative value, the return value
is negative. For example, calling this function on 12 returns 13, while calling it on -12 returns
-13.

This function internally calls isProbablePrime to determine whether a given number is prime or
composite. Refer to the documentation of that function for more information on the primality
test it implements.

5.38 shiftLeft:

Shifts the bits of the receiver to the left by the specified amount.
- (BigInteger *)shiftLeft: (int)count
Parameters

count
The number of bits by which the receiver should be shifted.

Return Value

A BigInteger object containing the value of the receiver shifted left by the specified amount.

5.39 shiftRight:

Shifts the bits of the receiver to the right by the specified amount.
- (BigInteger *)shiftRight: (int)count
Parameters

count
The number of bits by which the receiver should be shifted.

19

Return Value
A BiglInteger object containing the value of the receiver shifted right by the specified amount.
Discussion

Unlike native types, the BigInteger class does not represent negative values using 2’s comple-
ment but with an extra sign bit. Therefore, shifting right negative big integers does not produce
the same result as shifting right negative int or long values.

For example, —17 >> 1 yields -9 when performed on an int value, while it yields -8 when
performed on a BigInteger object.

5.40 sign

Returns the sign of the receiver.
- (int)sign
Return Value

-1 if the receiver contains a negative value; +1 if it contains a positive value; 0 if it contains
Z€ro.

5.41 sub:

Subtract the given big integer from the receiver and returns the result.
- (BiglInteger *)sub:(Biglnteger *)x
Parameters

x
The big integer to be subtracted from the receiver. Must not be nil.

Return Value

A BiglInteger object containing the result of the subtraction of z from the receiver.

5.42 toRadix:

Prints the value of the receiver to a string in the specified radix.
- (NSString *)toRadix: (int)radix
Parameters

radix
The radix. Should lie between 2 and 36.

Return Value

The textual representation of the receiver, expressed in the specified radix. This representation
consists of an optional minus sign, immediately followed by one or more digits.

Discussion

The function does not insert extraneous characters, such as thousand separators.

20

	Overview
	Installation
	Internal representation
	Maximal value
	Sample code

	Adopted Protocols
	NSCoding
	NSCopying

	Functions by Task
	Creating and initializing big integers
	Retrieving String Representation
	Accessing Numeric Value
	Comparing Big Integers
	Performing Arithmetic Operations
	Performing Bitwise Operations
	Handling Prime Numbers

	Class methods
	bigintWithBigInteger:
	bigintWithInt32:
	bigintWithRandomNumberOfSize:exact:
	bigintWithString:radix:
	bigintWithUnsignedInt32:

	Instance Methods
	abs
	add:
	bitCount
	bitwiseNotUsingWidth:
	bitwiseAnd:
	bitwiseOr:
	bitwiseXor:
	compare:
	copyWithZone:
	description
	divide:
	divide:remainder:
	encodeWithCoder:
	exp:
	exp:modulo:
	getBytes:length:
	greatestCommonDivisor:
	hash
	initWithBigInteger:
	initWithCoder:
	initWithInt32:
	initWithRandomNumberOfSize:exact:
	initWithString:radix:
	initWithUnsignedInt32:
	intValue
	inverseModulo:
	isEqual:
	isEqualToBigInteger:
	isEven
	isOdd
	isProbablePrime
	isZero
	longValue
	multiply:
	multiply:modulo:
	negate
	nextProbablePrime
	shiftLeft:
	shiftRight:
	sign
	sub:
	toRadix:

